
Kappa -Symmetry
of SL(2, R) -Invariant Super IIB Branes

Daren Zhou
Supervisor: Prof. Dr. Mees de Roo

Centrum voor Theoretische Natuurkunde
Rijksuniversiteit Groningen

May 14, 2007
Intern Rapport 349



Contents

Introduction 3

1 String Theory 6
1.1 The relativistic particle . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 The bosonic string . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 The superstring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 The Dp-brane and p-brane . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 T-duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Kappa-Symmetry 16
2.1 The superparticle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 The super D-string . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 The basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 The super D-string . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The super F-string . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 SL(2, R)-Invariant IIB Branes 24
3.1 The action of one-branes . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The universal formula . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Kappa-Symmetry of SL(2, R)-Invariant Super IIB Branes 32
4.1 The super one-branes . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 The universal formula for the super IIB p-branes with p > 1 . . . . 34
4.3 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1



Summary and Conclusions 41

Acknowledgements 42

A Some Conventions 43

B Proofs of Equations (4.25) and (4.26) 46

Bibliography 49

2



Introduction

Unifying all fundamental interactions in one theory is one of the goals of physics
research. In this course, symmetries have been playing and will still play important
roles. We are on the way to the ultimate theory, if it exists, though we do not
know when we can reach our destination. Many stories have been happening on
this journey.

About 150 hundred years ago, Maxwell found his famous equations and thus
gave an unified description of the electric and magnetic interactions, which are
two sides of what we call the electromagnetic interaction today. This is the first
unification in human history. Maxwell equations are linear equations and they are
very elegant. It was found that the electromagnetic field can be described by a
vector, namely, gauge potential. The electric and magnetic fields are field strength
of this gauge potential. Maxwell theory has gauge symmetry, which means that the
equations of motion are invariant under gauge transformations. Later, physicists
developed some kinds of nonlinear electromagnetic theories as modifications of the
original Maxwell theory. One of these is Born-Infeld theory, and the Born-Infeld
action becomes very important in string theory later.

At the end of 1940’s, quantum electrodynamics(QED) was fully established,
which is a good theory to describe the process of scattering and also the creation
and annihilation of some elementary particles. This theory has been verified by
experiments very well at high accurate level. Quantum electrodynamics is a kind
of quantum field theory which can be considered as a combination of special rel-
ativity and quantum mechanics. After merging the electromagnetic interaction
with another interaction, namely the weak interaction which is in charge of the
process of decay of particles, we arrive at another unified theory which is called
electroweak theory. Electroweak theory has U(1)×SU(2) symmetry. Here, the
three gauge bosons which transfer weak interactions can get their masses through
Higgs mechanism(Spontaneous Symmetry Breaking). By the mid of 1970’s, Quan-
tum chromodynamics(QCD) was constructed, which is a theory describing strong
interactions, and which has SU(3) symmetry. SU(3) Lie algebra has 8 generators,
so, we have 8 different gluons which transfer color force, i.e. strong interactions,
between quarks. This symmetry has no spontaneous symmetry breaking in this
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case, because the gluons are massless particles. In the following years, people
combined the electroweak and strong interactions together and got the so called
Standard Model which has SU(3)C ×SU(2)L×U(1)Y symmetry. The standard
model has achieved great success and has been verified by many experiments. But
it still has some problems. One is that the standard model has too many param-
eters which should be fixed by experiments. This is not satisfactory as a theory.
And the standard model gave the prediction of the existence of the Higgs particle
which has not been found yet. Some people may think that the Higgs particle may
be found on LHC in the coming years but we can not guarantee this. Furthermore,
the standard model does not include the gravitational interaction, which might be
the most unsatisfied thing since the gravitational interaction is one of the four
fundamental interactions we have known. On the other hand, the gravitation ap-
pears in string theory naturally. String theory may unify the four fundamental
interactions.

At first, string theory was proposed as a candidate for describing the strong
interaction but was discarded later because of the success of quantum chromody-
namics. After interpreting the massless spin 2 particle which appears in string
theory as the graviton, the interest of string theory was revived. Another good
thing is that the ultraviolet divergences disappear in string theory which occur in
the quantum field theory of elementary particles. By including fermionic fields,
we get the superstring theory. At the beginning, there are many versions of super-
string theories. Things changed after the so-called "first superstring revolution"
which started at about 1984, lasted for about 2 years. The famous Green-Schwarz
anomaly cancellation played a very important role during this period and left us
with only five superstring theories, namely Type I, Type IIA, Type IIB, SO(32)
heterotic and E8 ×E8 heterotic. All of these five theories require the dimension of
spacetime to be 10. The "second superstring revolution" started at about 1995.
During this revolution, some dualities were found, such as T-duality and S-duality,
and the five superstring theories can be related by these dualities. And also M-
theory was found, which lives in a spacetime of 11 dimensions. The five superstring
theories can be derived from M-theory. At that time, Dp-branes and p-branes were
discovered.

Since there are other extended objects in string theory, studying only strings
is not reasonable. In order to understand string theory better, we should also
study the bound states of strings, Dp-branes and p-branes. It was found that
fundamental strings(F-strings) can end on D-strings(D1-branes). And these bound
states have an SL(2, R) symmetry at classical level, which reduces to SL(2, Z)
symmetry at quantum level. Similar things happen to other type IIB branes. The
D3-brane forms a singlet and the five-branes(the D5-brane and the NS5-brane)
form a doublet under SL(2, R) symmetry transformations. While the one-branes
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and five-branes both form doublets under SL(2, R) symmetry transformations, the
seven-branes and the nine-branes form a triplet and a quadruplet separately. The
type IIA string theory has no such an SL(2, R) symmetry. This is because that the
type IIA string theory has spinors of opposite chirality in right- and left-moving
sectors, i.e., which is a non-chiral theory.

Besides SL(2, R) symmetry, there is also another symmetry named kappa-
symmetry for these bound states. Kappa-symmetry was first found in the super-
particle case and then was generalized in the cases of superstrings, super p-branes
and super Dp-branes. Kappa-symmetry is a natural tool to reduce the fermionic
degrees of freedom by half and through which(among other things) the supersym-
metry on the worldvolume can be gotten. The main topic of this report is the
kappa-symmetry property of the SL(2, R)-invariant super IIB branes.

The outline of this report is as following. In Chapter 1, some basic concepts
of string theory will be introduced. There, we will not cover all important things
in string theory, but will just consider the things that we may use in the later
chapters. In Chapter 2, we will give a discussion about kappa-symmetry for the
cases of the super particle, the super D-string and the super F-string. In Chapter
3, we will discuss the SL(2, R) symmetry of IIB branes. In Chapter 4, the kappa-
symmetry property of the SL(2, R)-symmetric IIB branes will be discussed. And
then, the summary and conclusions will be given. In the appendices, we will give
some conventions, identities and proofs.
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Chapter 1

String Theory

In this chapter, we will give a basic description of string theory. The purpose is
to give some feelings of the concepts that may relate to the contents in the later
chapters. We will start with a simple introduction of the relativistic particle. Then
we will discuss the bosonic open and closed strings. Here, we will not go to the
details of the quantisations, but will just discuss some symmetry properties of the
action, the solutions under different boundary conditions and the first few levels
of the state spectrum. Superstrings will be discussed in an almost similar way.
At the last of this chapter, T-duality, Dp-branes and p-branes will be discussed
briefly. For these aspects, we refer to [1, 2, 3, 4].

1.1 The relativistic particle
Before discussing strings, it is useful to discuss the free relativistic particle. One
reason for this is that there are some analogies between the action of relativistic
particles and the action of relativistic strings, the other reason is that since we will
discuss the kappa-symmetry property of the superparticle in the next chapter, it
is better to give some preliminaries of relativistic particles in advance.

First, we should know the action of a free relativistic particle. Certainly, the
action is not arbitrary and it must have some properties. One important property
is that the action should be Lorentz invariant, i.e., which should be a Lorentz
scalar. Imaging a relativistic particle moving freely in a spacetime(the dimension
is not specified here), we ask: what is the Lorentz scalar? From the theory of
relativity, we know that the quantity below is a Lorentz scalar:

ds2 = −gµνdXµdXν . (1.1)

Here, we define the spacetime metric as gµν = diag(−1, 1, . . . , 1). The length of
the path traced out by the particle is

∫
ds, with ds =

√
ds2. We conjecture that
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the action is proportional to this quantity. If we take ~ = c = 1, the action should
be dimensionless. Since

∫
ds has a dimension of length, i.e. the inverse of mass, it

is natural to take the action as

S = −m

∫
ds = −m

∫
dτ

√
−Ẋ2, with Ẋ2 = gµνẊ

µẊν and Ẋµ ≡ dXµ

dτ
. (1.2)

Where, the minus sign is a correct choice. The parameter m is identified with the
rest mass of the particle. And τ is a parameter. Since the path traced out by
the particle is one dimensional, we need only one parameter. Choosing another
parameter τ ′ = τ ′(τ), if X ′µ(τ ′) = Xµ(τ), we get

S ′ = −m

∫
ds = −m

∫
dτ ′

√
−gµν

dX ′µ(τ ′)

dτ ′
dX ′ν(τ ′)

dτ ′

= −m

∫
dτ |dτ ′

dτ
|| dτ

dτ ′ |
√

−Ẋ2 = S. (1.3)

Therefore, the action is invariant under reparameterization of the parameter τ .
And also, the action has a global Poincaré symmetry.

Besides the action (1.2), there is another form of action which seems more
convenient. It is

S =
1

2

∫
dτ(e−1Ẋ2 − em2), (1.4)

here e(τ) is an auxiliary field which has a dimension of length/mass and which can
also be looked as an einbein on the world-line. This action has no square root term.
The action (1.2) can be derived from (1.4). While the action (1.2) is meaningless
for a massless particle, the action (1.4) can be used to describe a massless particle.
Furthermore, the action (1.4) is easier to be generalized to the superparticle case
which will be discussed in Section 2.1.

1.2 The bosonic string

1.2.1 Actions

In this section, we only consider bosonic strings. Since the action of a free rela-
tivistic particle is proportional to the length of the path traced out by the particle,
it is natural to guess that the action of a free string is proportional to the area of
surface traced out by the string(usually, the surface is called the world-sheet of the
string). Thus, we achieve the famous Nambu-Goto action for the bosonic string:

S = −T

∫
d 2σ

√
−g. (1.5)
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Where d 2σ = dσ1dσ2 with σi’s are the parameters, just as the parameter τ in
the point particle case. And g = det gij with gij = gµν

∂Xµ

∂σi
∂Xν

∂σj . The metric gij

is called the induced metric on the world-sheet or the pullback of the spacetime
metric gµν . The Xµ(σ1, σ2)’s are the embedding coordinates or string coordinates,
which map the point (σ1, σ2) in the parameter space to the point Xµ(σ1, σ2) in
the target space. Here µ = 0, 1, . . . , D − 1 with D is the dimension of the target
spacetime. T is the tension of the string, which has a dimension of mass/length,
and for general p-branes, T has a dimension of mass×length−p. And also, for
strings, we have following relations:

T =
1

2πα′ , α′ = `2
s. (1.6)

Where, the parameter α′ is called the "universal Regge slope" and `s is the "in-
trinsic" length of the string.

Similar to the case of relativistic particle, we can also introduce an auxiliary
field in the string case and then we get the Polyakov action:

S = −T

2

∫
d 2σ

√
−hhij∂iX

µ∂jXµ, (1.7)

here the auxiliary field hij is called the world-sheet metric and h = det hij. The
Nambu-Goto action can be derived from the Polyakov action. There are some
symmetries for this action:

• World-sheet reparameterization invariance

δXµ = ξi∂iX
µ, δhij = ξk∂kh

ij − ∂kξ
ihkj − ∂kξ

jhik, (1.8)

where ξi is the infinitesimal shift of σi.

• Target space global Poincaré invariance

δXµ = Λµ
νX

ν + aµ, δhij = 0, (1.9)

with Λµ
ν and aµ are constant.

• Local Weyl scaling or conformal invariance

δhij = Ω(σi, σj)hij, δXµ = 0. (1.10)

Note that, the local Weyl scaling invariance is only available for strings and
is not available for other extended objects with more dimensions. Certainly,
the Nambu-Goto action also has the world-sheet reparameterization and global
Poincaré invariance, but we can not see the local Weyl scaling invariance from the
Nambu-Goto action.
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1.2.2 Solutions

The equations of motion of Xµ from the action (1.7) are very complicated if we
do not choose a good parameterization. It is lucky that we do can choose such a
parameterization that by which we can simplify the action and then get simpler
equations. First, we can use the world-sheet reparameterization to make the world-
sheet metric has the form

hij = ew(σi, σj)ηij with ηij = diag(−1, 1). (1.11)

This kind of gauge is usually called the conformal gauge or orthonormal gauge.
The spacetime with a metric having the above form is conformally flat. Further,
we can use the local Weyl scaling invariance and get

hij = ηij. (1.12)

Therefore, the Polyakov action (1.7) can be simplified as

S = −T

2

∫
d 2σηij∂iX

µ∂jXµ. (1.13)

It is easy to get the equations of motion by using the principle of least action. The
equations of motion are just the one-dimensional wave equations:

2Xµ = 0, (1.14)

with some boundary conditions. Where 2 ≡ ∂i∂
i. Usually, for strings, we let

σ1 ≡ τ , σ2 ≡ σ and σ ∈ [ 0, π].
Now, let us discuss the boundary conditions and solutions for closed and open

strings.

• Closed strings
For closed strings, the imposed boundary condition is

Xµ(τ, σ) = Xµ(τ, σ + π). (1.15)

This is natural for closed strings, since closed strings have no end. And the
solution of the equation of motion (1.14) with the above boundary condition
can be expressed as

Xµ(τ, σ) = Xµ
L(τ + σ) + Xµ

R(τ − σ), (1.16)

with Xµ
L(τ +σ) and Xµ

R(τ−σ) are the left- and right-moving parts separately,
which take the form:

Xµ
L(τ + σ) =

1

2
qµ +

1

2πT
P µ(τ + σ) +

i

2
`s

∑
n6=0

1

n
α̃µ

ne−2i(τ+σ)n, (1.17)

Xµ
R(τ − σ) =

1

2
qµ +

1

2πT
P µ(τ − σ) +

i

2
`s

∑
n6=0

1

n
αµ

ne−2i(τ−σ)n, (1.18)
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where, qµ is the position of the center of mass of the string and P µ is the
total momentum.

• Open strings
For open strings, there are two types of boundary conditions. One is the
Neumann boundary condition

∂σX
µ(τ, 0) = ∂σX

µ(τ, π) = 0. (1.19)

And the solution of the equation of motion (1.14) with the Neumann bound-
ary condition is

Xµ(τ, σ) = qµ +
1

πT
P µτ + i`s

∑
n6=0

1

n
αµ

ne−inτ cos(nσ). (1.20)

Another boundary condition is the Dirichlet boundary condition

∂τX
µ(τ, 0) = ∂τX

µ(τ, π) = 0. (1.21)

Here, we do not give the solutions for the boundary condition. We will discuss
this in Section 1.4. Certainly, we can impose different boundary conditions
on different ends and for different µ. If an end is imposed with the Neumann
boundary condition in the direction µ, this end can move freely along this
direction. If an end is imposed with the Dirichlet boundary condition in the
direction µ, this end can not move along this direction.

Note that, we shall not forget that there are still some constraints on the
solutions and these constraints come from the equation of motion with respect to
hij.

1.2.3 Spectra

Now, let us go to the quantum theory of bosonic strings. There are three quanti-
sation procedures: covariant quantisation, light-cone gauge quantisation and path
integral quantisation. Each procedure has advantages and disadvantages, but we
can get the same results by different procedures. Here, we do not go to the details
of the Virasoro algebra. After quantisation, we get the state spectrum.

For open strings, the ground state is a tachyon scalar field, which has a imag-
inary mass and is not stable. The first excited states contain D − 2 massless
states. These D−2 massless states form a massless representation of D-dimensional
Poincaré group. Furthermore, we can fix D = 26. This is because that we require
an anomaly free theory. And also, we can get this critical dimension by comparing
the results of covariant quantisation and light-cone gauge quantisation.
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For closed strings, the ground state is still a tachyon. The first excited states
contain (D − 2)2 massless states which form the massless representations of D-
dimensional Poincaré group. These massless states can be split into three irreps:
D(D−3)

2
states which form a symmetric and traceless tensor with spin 2, (D−2)(D−3)

2

states which form an antisymmetric tensor and one scalar.

1.3 The superstring

1.3.1 Actions

Bosonic strings do not include fermions but our real world do have fermions. So
bosonic string theory is not sufficient and we should generalize it to the so-called
superstring theory. We will see that the superstring theory has some advantages as
compared to the bosonic string theory. For instance, superstrings has no tachyon
and reduce the dimension of space-time to 10 which is much less than 26 and is
closer to 4.

Clearly, for superstrings, the action should contains fermions. In the orthonor-
mal gauge, the simplest action can be given by

S = −T

2

∫
d 2σ

(
∂iX

µ∂iXµ − iψ
µ6∂ ψµ

)
, (1.22)

here ψµ are Majorana spinors on the world-sheet:

ψµ =

(
ψµ
−

ψµ
+

)
, ψ = ψ†γ0. (1.23)

The action (1.22) is invariant under the following supersymmetry transformations:

δXµ = εψµ, δψµ = −i6∂Xµε, (1.24)

here ε is a constant spinor. This is just what we expected, if we require supersym-
metry on world-sheet.

Now, let us try to get the equations of motion of ψµ and find the suitable bound-
ary conditions. The variation of the action (1.22) with respect to the variation of
ψµ is

δS =
i T

2

∫
d 2σ

(
δψ

µ6∂ ψµ + ψ
µ6∂ δψµ

)
= i T

∫
d 2σ

[
δψ

µ6∂ ψµ +
1

2
∂i(ψ

µ
γiδψµ)

]
. (1.25)

It is obvious that the equation of motion is 6∂ ψµ = 0, as expected. If we choose
γ1 = iσ1, we have following boundary conditions.
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• For open superstrings
Firstly, we can impose the Dirichlet condition. That is

δψµ±(τ, σ = 0, π) = 0. (1.26)

Secondly, if we suppose that ψ+(τ, 0) = ψ−(τ, 0) and δψµ+ = ±δψµ− at the
ends, we still have two choices:

ψ+µ(τ, π) = ψ−µ(τ, π) (Ramond) (1.27a)
or

ψ+µ(τ, π) = −ψ−µ(τ, π) (Neveu-Schwarz). (1.27b)

The equations of motion are given by

(∂τ + ∂σ)ψµ
− = 0, (∂τ − ∂σ)ψµ

+ = 0. (1.28)

• For closed superstrings
Firstly, we have a periodic boundary condition(Ramond)

ψµ(σ + π) = ψµ(σ), δψµ(σ + π) = δψµ(σ). (1.29)

Secondly, we have a anti-periodic boundary condition(Neveu-Schwarz)

ψµ(σ + π) = −ψµ(σ), δψµ(σ + π) = −δψµ(σ). (1.30)

And we can impose Ramond and Neveu-Schwarz boundary conditions on the
± components separately.

As in the bosonic case, we should have some constraints to get the correct
spectrum of states. One is that the energy momentum tensor Tij = 0, which is
the same as the bosonic string case, another is that the supersymmetry current
J i ≡ (6 ∂Xµ)γiψµ = 0. And these two constraints are related to each other if
requiring supersymmetry on the world-sheet.

1.3.2 Spectra

In the superstring theory, we can fix the dimension of space-time D = 10. As
considering the spectrum of the states of open superstrings, the Ramond and
Neveu-Schwarz sectors give different results. For the Neveu-Schwarz sector, the
ground state is still a tachyon and the first excited states are D−2 massless states
which is a massless vector, denoted by 8υ. The spectrum of the Ramond sector
consists of no tachyon, and the ground states are massless and are degenerate. If
we suppose that these spinors are Majorana-Weyl spinors, with other constraints,
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we can get that the degeneracy is 8. Because we can choose positive or negative
chirality, we have two 8-dimensional spinors denoted by 8s and 8c respectively.
The tachyon can be get rid of by the GSO(Gliozzi-Scherk-Olive) projection and at
the same time we get supersymmetry.

For closed superstrings, we have four different sectors: (NS, NS), (NS, R), (R,
NS) and (R, R) sectors. Here, (NS, R) means that Neveu-Schwarz condition is
imposed on the +-component(left moving) and the Ramond condition is imposed
on the −-component(right moving) and others are similar. This time, we can
apply different GSO projections to the +-component and the −-component. As
a result, we have type IIB superstring theory(the massless spinors have equal
chirality in right- and left- moving sectors) and type IIA superstring theory(the
massless spinors have opposite chirality in right- and left- moving sectors). Table
1.1 gives the spectra of the massless states of type IIA and type IIB superstring
theories.

IIB IIA
(NS, NS) 8υ ⊗ 8υ = 1 ⊕ 28 ⊕ 35υ 8υ ⊗ 8υ = 1 ⊕ 28 ⊕ 35υ

(R, R) 8s ⊗ 8s = 1 ⊕ 28 ⊕ 35s 8s ⊗ 8c = 8υ ⊕ 56υ

(R, NS) 8s ⊗ 8υ = 8s ⊕ 56s 8s ⊗ 8υ = 8s ⊕ 56s

(NS, R) 8υ ⊗ 8s = 8s ⊕ 56s 8υ ⊗ 8c = 8s ⊕ 56c

Table 1.1: Spectra of the massless states of IIB and IIA superstring theories.

In this thesis, we will only consider IIB theory. The (NS, NS) sector of IIB
theory contains a dilaton φ which controls the strength of string interactions, a
Kalb-Ramond field Bµν and a gravity field Gµν . The (R, R) sector of IIB theory
contains a Ramond-Ramond 0-form C(0)(or the axion ` ), a Ramond-Ramond 2-
form Cµν and a Ramond-Ramond 4-form Cµνρσ. The (R, NS) and (NS, R) sectors
have the same fields content: a gravitino field with spin 3

2
and a dilatino field with

spin 1
2
. And these fermionic states all have the same chirality.

1.4 The Dp-brane and p-brane

1.4.1 T-duality

Before discussing branes, let us give an introduction about T-duality for open
strings. T-duality is a very important concept in string theory. It can give an
equivalence between the string theory in a small scale and in a large scale. It
interchanges the type IIA and type IIB superstring theories. And it also give the
necessity for the existence of Dp-branes. Here we just give a short introduction. In
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the superstring theory, we have a spacetime of dimension D = 10. If one dimension
is compactified, for example x9, under T-duality, we have

X9
L(τ + σ) 7−→ X9

L(τ + σ); X9
R(τ − σ) 7−→ −X9

R(τ − σ), (1.31)

and other string coordinates are not changed. Thus for open strings:

X9(τ, σ) 7−→ X ′9(τ, σ) = X9
L(τ + σ) − X9

R(τ − σ)

=
1

πT

n

R
σ + `s

∑
n6=0

α9
n

n
e−inτ sin(nσ). (1.32)

Since sin(nσ) = 0 at ends σ = 0 and σ = π, we get

∂τX
′9(τ, 0) = ∂τX

′9(τ, π) = 0, (1.33)

which means that we have a Dirichlet boundary condition in this direction.
From the example of T-duality in the 9th direction above, we get a D8-brane,

which is nine dimensional in a target spacetime. The ends of open strings can
move freely in this D8-brane. Generally, if we T-dualize (9− p) directions, we will
get a Dp-brane.

1.4.2 Actions

The extended objects can also be gotten from supergravity. Supergravity theory
is the low energy limit of superstring theory. In the (NS, NS) sector of type
IIB supergravity, people found two solutions: the fundamental string and the
non-singular solitonic five-brane(NS5-brane). These are extended objects but not
Dp-branes, which are called p-branes. The fundamental string carries an electric
string charge which is the source of Bµν . The non-singular solitonic 5-brane carries
a magnetic charge with respect to the spacetime Hodge dual of Bµν . While the (NS,
NS) sector have p-brane solutions, the (R, R) sector of IIB supergravity has Dp-
brane solutions. It was found that these solutions are Dp-branes with p = 1, 3, 5, 7.
The D1-brane has an electric charge and the D5- and D7-branes are magnetically
charged. The D3-branes is a singlet which has both electric and magnetic charges.

Generally, a p-brane can couple to a NS-NS (p+1)-form and the action is given
by

S = −T

∫
dp+1σ[

√
−g +

√
−g ? B(p+1)], (1.34)

here, B(p+1) is a NS-NS (p + 1)-form and the ? is the Hodge dual operator. As an
example, we give the action of the Fundamental string(F-string)

S = −T

∫
d2σ[

√
−g +

1

2
εijBij], (1.35)
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with Bij = ∂iX
µ∂jX

νBµν is called the pull back of Bµν .
And the Dp-brane action is given by

S = −T

∫
dp+1σ[e−φ

√
− det(g + F) − LWZ ], (1.36)

here, φ is the dilaton and F = db − B(2), with b is the Born-Infeld vector which
lives on the world-volume and B(2) is a NS-NS 2-from or a Kalb-Ramond 2-form.
The first part of the action is called Dirac-Born-Infeld(DBI) part. The second part
is called Wess-Zumino(WZ) part which is

LWZ = C(p+1) + C(p−1) ∧ F +
1

2!
C(p−3) ∧ F ∧ F + . . . , (1.37)

here, C(p+1) is the R-R (p + 1)-form. For example, the action of the D-string is
given by

S = T

∫
d2σ[−e−φ

√
− det(g + F) +

1

2
εij(Cij + `Fij)], (1.38)

with Cij = ∂iX
µ∂jX

νCµν and Fij = d[ibj] − ∂iX
µ∂jX

νBµν . Where ` = C(0) is the
axion.
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Chapter 2

Kappa-Symmetry

Kappa-symmetry is a local fermionic symmetry and it is a natural approach to
reduce half of the fermionic degrees of freedom. Thus it is important for keeping
supersymmetry on the world-volume. We will give some simple examples of kappa-
symmetry in this chapter. The kappa-symmetry properties of the superparticle,
the super D-string and the super F-string will be discussed.

2.1 The superparticle
Kappa-symmetry was first found by Siegel [5] in the superparticle case. Following
[6], we discuss kappa-symmetry of the superparticle in this section. In Section 1.1,
we have discussed the relativistic bosonic point particle. In order to get the action
of the superparticle, we need to generalize the Minkowski space which contains
only bosonic coordinates to the so-called superspace which contains fermionic co-
ordinates also. If we have N spinor coordinates θA(A = 1, 2, . . . , N) in superspace,
we say that we have N supersymmetries. Generally, the spinor θ can be Dirac
spinors, but in this section, we restrict θ to be Majorana and the Γ matrices to be
real.

For a massless particle, the supersymmetric generalization of the action (1.4)
can be given as

L =
1

2
e−1(Ẋ − θ

A
Γµθ̇A)2, (2.1)

which is obviously Lorentz invariant. And it is also invariant under the following
supersymmetric transformations:

δεθ
A = εA, δεθ

A
= εA, δεX

µ = εAΓµθA, δεe = 0, (2.2)

with εA are infinitesimal constant spinors.
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Now, let us define the kappa-symmetry transformations as following:

δκθ
A = Γ·ΠκA, δκθ

A
= κ AΓ·Π, δκX

µ = θ
A
Γµδκθ

A, δκe = 4e θ̇ AκA, (2.3)

here κA(τ) are infinitesimal non-constant spinors and Πµ ≡ Ẋµ − θ
A
Γµθ̇A. So, the

variation of the Lagrangian (2.1) under the kappa-symmetry transformations (2.3)
is

δκL = − 1

2e2
(4e θ̇ AκA)Π2 + e−1Πµ

[
θ̇

A

Γµδκθ
A + θ

A
Γµδκθ̇

A
]

−e−1Πµ

[
δκθ

A
Γµθ̇A + θ

A
Γµδκθ̇

A
]

= −2e−1 θ̇ AκAΠ2 + e−1Πµ

[
θ̇

A

ΓµΓ·ΠκA − κAΓ·ΠΓµθ̇A
]

= 0. (2.4)

Therefore, the Lagrangian (2.1) has kappa-symmetry.
The equations of motion are

Π2 = 0, Π̇µ = 0, Γ·Πθ̇A = 0. (2.5)

Because (Γ · Π)2 = −Π2 = 0, the matrix Γ ·Π has half the maximum possible
rank. Thus, half of the components of θA are gauged away since which always
appears multiplied by Γ·Π. This is the consequence of that the Lagrangian (2.1)
has kappa-symmetry.

2.2 The super D-string

2.2.1 The basic idea

Kappa-symmetry was discussed in the superstring case [7, 8]. And it was proved
for the super Dp-branes in a flat background [9], in a bosonic background [10] and
in a general background [11].

The basic idea to prove that there is kappa-symmetry for super Dp-branes is
as follows [9]. The Lagrangian of a super Dp-brane contains two parts, namely the
Dirac-Born-Infeld part and the Wess-Zumino part:

L = LDBI + LWZ . (2.6)

Under kappa-symmetry transformations, if we can write the variations as

δκLDBI = 2δκθγ
(p)T j

(p)∂jθ, (2.7a)

δκLWZ = 2δκθT
j
(p)∂jθ, (2.7b)
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with some γ(p) and T j
(p) to be specified, and at the same time, (γ(p))2 = 1, and

further, if we require that

δκθ = κ(1 − γ(p)), (2.8)

we can get δκL = 0. Since (γ(p))2 = 1, the eigenvalues of γ(p) are +1 or −1. And
furthermore, if tr(γ(p)) = 0, half of the fermionic components will be gotten rid of.

2.2.2 Preliminaries

In this section, we will discuss kappa-symmetry for super D-strings in a flat back-
ground. We follow [9]. The Grassmann coordinates θ are spacetime spinors and
world-volume scalars. In the Type IIB theory, we have two Majorana-Weyl spinors
of the same chirality. The Dirac matrices defined here have a extra factor i as com-
pared to the usual ones. The anticommutation relations are

{Γµ, Γν} = 2ηµν , (2.9)

where ηµν = diag(−1, 1, . . . , 1). As in the superparticle case, we define a super-
symmetric quantity

Πµ
i ≡ ∂iX

µ − θΓµ∂iθ, (2.10)

here i is the index of world-volume coordinates. Πµ
i is a "pull back operator" in

a superspace background just as ∂iX
µ in a bosonic background. Then we can get

the induced world-volume metric

gij = Πµ
i Πν

j ηµν . (2.11)

Sometimes, it is convenient to use the notations of differential forms, thus it is
good to define

dθ ≡ dσi∂iθ = −∂iθdσi. (2.12)

We see that dσi is regarded as an odd element of the Grassmann algebra. The
supersymmetric one-forms are Πµ = dXµ + θΓµdθ and dθ.

Just as in the superparticle case, the variation of the bosonic coordinate under
kappa-symmetry transformations is defined as

δκX
µ = θΓµδκθ = −δκθΓ

µθ. (2.13)

Then the variation of Πµ
i is

δκΠ
µ
i = δκ(∂iX

µ) − δκ(θΓ
µ∂iθ)

= −∂i(δκθΓ
µθ) − δκθΓ

µ∂iθ − θΓµ∂iδκθ

= −2δκθΓ
µ∂iθ. (2.14)
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Defining the "induced γ matrix": γi ≡ Πµ
i Γµ, we get

δκgij = δκ(Π
µ
i Πν

j ηµν)

= −2δκθΓ
µ∂iθΠ

ν
j ηµν − 2Πµ

i δκθΓ
ν∂jθηµν

= −2δκθ(γi∂j + γj∂i)θ

≡ −2δκθγ(i∂j)θ. (2.15)

We have known that there should be a Born-Infeld vector which lives on the
world-volume. The field strength is defined by

Fij = Fij − Bij, (2.16)

where Fij = ∂ibj − ∂jbi with b is the BI field and Bij = Πµ
i Πν

j Bµν .
The supersymmetric version of the pull back of the NS-NS 2-form turns out to

be [12]:

B(2) = −θτ3Γµdθ
(
dXµ +

1

2
θΓµdθ

)
. (2.17)

Under kappa-symmetry transformations, B(2) varies as

δκB(2) = −2δκθτ3ΓµdθΠµ + d∆, (2.18)

with

∆ = −δκθτ3ΓµθΠ
µ +

1

2
δκθτ3ΓµθθΓ

µdθ − 1

2
δκθΓ

µθθτ3Γµdθ. (2.19)

By requiring δκb = ∆, we can get

δκF = 2δκθτ3ΓµdθΠµ, (2.20)

or in terms of components

δκFij = 2δκθτ3(γi∂j − γj∂i)θ ≡ 2δκθτ3γ[i∂j]θ. (2.21)

2.2.3 The super D-string

Now, let us consider the super D-string case. The action of the super D-string can
be written as

S =

∫
d2σ

{
− e−φ

√
− det(g + F) +

1

2
εij(Cij + `Fij)

}
, (2.22)

which is formally the same as the action given by (3.27). Since both the action
(3.28) and (3.27) can be derived from the same action (3.25) by integrating out
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the auxiliary field t, we say that these two actions are equivalent. We will use the
action (3.28). As we consider the D-string case, we will take p = 0 and q = 1 in
the action (3.28)(notice that, the definitions of p and q are different from those in
Chapter 4). Then, we have

L = −
√

e−2φ + `2
√
−g +

1

2
εijCij, (2.23)

which is formally looks the same as the action of the bosonic D-string, but the
fields contents are different. Here Cij = Πµ

i Πν
j Cµν , but in the bosonic case, Cij =

∂iX
µ∂jX

νCµν . If we define

ρD =
1

2

√
e−2φ + `2εijτ3γiγj, (2.24a)

T j
D =

√
e−2φ + `2εijτ3γi, (2.24b)

from (2.24a), we can get

(e−2φ + `2)−1ρ2
D =

1

4
εijεklτ3γiγjτ3γkγl

=
1

4
(δikδjl − δilδjk)γiγjγkγl

=
1

4
γiγjγ

[iγj]

= −γ0γ0γ1γ1

= − det(gij). (2.25)

Now, let us prove that

ρDγi = T j
Dgji. (2.26)

From (2.24a) and (2.24b), we have

(e−2φ + `2)−1/2ρDγk =
1

2
εijτ3γiγjγk

= τ3ε
ikγiγ

2
k

= τ3ε
ikγigkk, (no summation on k.) (2.27)

(e−2φ + `2)−1/2T j
Dgjk = εijτ3γigjk

= τ3ε
ikγigkk

= (e−2φ + `2)−1/2ρDγk. (no summation on k.) (2.28)

Hence, (2.26) is proved. If let

ρD = γD

√
e−2φ + `2

√
−g, (2.29)

20



we can get

γD =
1√
−g

1

2
εijτ3γiγj, (2.30)

and it is easy to check that

γ2
D = 1, trγD = 0. (2.31)

These conditions are important for kappa-symmetry.
Now, let us consider the variation of the DBI part under kappa-symmetry

transformations:

δκ

[
−

√
e−2φ + `2

√
−g

]
=

−
√

e−2φ + `2

2
√
−g

δκ(−g)

= −1

2

√
e−2φ + `2

√
−g gjiδκgij

= 2
√

e−2φ + `2
√
−gδκθγig

ij∂jθ

= 2δκθγDT j
D∂jθ. (2.32)

Where, we let δκφ = 0 and δκ` = 0. If we let

δκCij = 2
√

e−2φ + `2 δκθτ3γ[i∂j]θ, (2.33)

or in the form of forms

δκC(2) = 2
√

e−2φ + `2 δκθτ3ΓµdθΠµ, (2.34)

we can get δκLWZ = 2δκθT
j
D∂jθ. And if δκθ = κ(1−γD), the super D-string action

will be invariant under kappa-symmetry transformations. Certainly, there could
be some total derivative in the variation of C(2).

2.3 The super F-string
Now, let us prove that the action of the super F-string has kappa-symmetry in a
flat background. The procedure is almost the same as that in last section. The
action of the super F-string is given by

S = −
∫

d2σ[
√
−g +

1

2
εijBij], (2.35)

where Bij = Πµ
i Πν

j Bµν . If we let

ρF =
1

2
εijτ3γiγj, (2.36a)

T j
F = εijτ3γi, (2.36b)
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similar to the case of super D-string in last section, we can get

ρ2
F = − det g. (2.37)

ρF γk = T j
F gjk. (2.38)

If γF is defined by

ρF = γF

√
− det g , (2.39)

we have

γF =
1√

− det g

1

2
εijτ3γiγj. (2.40)

Then, we can get

γ2
F = 1, trγF = 0. (2.41)

Hence

γF T j
F = γF ρF γig

ij

=
√

− det g γi g
ij. (2.42)

Therefore, the variation of the DBI part is

δκ[−
√

− det g ] =
−1

2
√
− det g

δκ(− det g)

=
−
√
− det g

2
gjiδκgij

=
−
√
− det g

2
gji[−2δκθ(γi∂j + γj∂i)θ]

= 2δκθ
√

− det gγig
ij∂jθ

= 2δκθγF T j
F ∂jθ. (2.43)

And we already have [9](ignoring the total derivative)

δκ
1

2
εijBij =

1

2
εij[−2δκθτ3(γi∂j − γj∂i)θ]

= −δκθτ3ε
ij(γi∂j − γj∂i)θ

= −2δκθτ3ε
ijγi∂jθ

= −2δκθT
j
F ∂jθ. (2.44)

So, the Lagrangian varies as

δκL = 2δκθ(γF + 1)T j
F ∂jθ, (2.45)
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which is zero if δκθ = κ(1 − γF ). Therefore, the super F-string really has kappa-
symmetry as expected.

So far, we have discussed the kappa-symmetry properties for the simple cases.
Before considering kappa-symmetry in the more complicated situations, we will
first discuss SL(2, R) symmetry of IIB brane actions in next chapter.
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Chapter 3

SL(2, R)-Invariant IIB Branes

The Type IIB superstring theory has SL(2, R) symmetry at the classical level and
SL(2, Z) symmetry at the quantum level. This symmetry was first proposed by
[13]. But, type IIA theory has no such symmetry. The reason is that type IIA
theory is a non-chiral theory. Type IIB supergravity theory is the low energy limit
of type IIB superstring theory. The F-string and the D-string are the solutions of
type IIB supergravity. They form a doublet under SL(2, R) transformations [14].
The non-singular solitonic 5-brane(NS5-brane) and the D5-brane, which are also
the solutions of type IIB supergravity, form a doublet under SL(2, R) transforma-
tions [15]. Unlike the cases of one-branes and five-branes, the D3-brane solution
is a singlet under these transformations. In this chapter, we will consider the
SL(2, R) symmetry of the brane actions. The brane actions which are invariant
under the transformations of SL(2, R) symmetry have been constructed for the
strings [16, 17], the D3-brane [18] and the five-branes [19]. Recently, all SL(2, R)-
invariant IIB brane actions have been constructed by an elegant way [20].

In this chapter, first, we will discuss the SL(2, R) symmetry for the string action
by following [16, 21]. Then, we will follow [20] to give an universal description for
all type IIB branes.

3.1 The action of one-branes
First, let us consider the string case. The SL(2, R)-invariant action can be con-
structed as(in Einstein frame) [16]

S = −
∫

d2σ
1

2υ

{
− gE +

[
e−φ(?Fb)

2 + eφ(?Fc − ` ? Fb)
2
]}

, (3.1)

here gE = det [(gE)ij] with (gE)ij = e−φ/2gij. (gE)ij and gij are the pullbacks of the
Einstein metric and the string metric respectively. The field strength are defined
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by

Fb = Fb − B(2) = db − B(2), (3.2a)
Fc = Fc − C(2) = dc − C(2). (3.2b)

Where b and c are the vector fields on the worldvolumes of the F-string and the
D-string respectively. B(2) and C(2) are the NS-NS and R-R 2-forms which couple
to the F-string and the D-string respectively. υ is an introduced auxiliary field. It
is easy to check that the above action (3.1) has the rescaling invariance:

Xµ −→ λXµ, υ −→ λ4υ, Fb −→ λ2Fb, Fc −→ λ2Fc. (3.3)

Now, let us rewrite the action (3.1) in a manifestly SL(2, R)-invariant way. If we
define

−→
F T ≡

(
?Fc ?Fb

)
, M ≡ eφ

(
|λ|2 `
` 1

)
, (3.4)

with λ ≡ ` + ie−φ, we can get

−→
F TM−1−→F =

(
?Fc ?Fb

)
eφ

(
1 −`
−` |λ|2

)(
?Fc

?Fb

)
= eφ

(
?Fc − ` ? Fb |λ|2 ? Fb − ` ? Fc

) (
?Fc

?Fb

)
= eφ

[
(?Fc)

2 − 2`(?Fb)(?Fc) + |λ|2(?Fb)
2
]

= eφ
[
(?Fc)

2 − 2`(?Fb)(?Fc) + (`2 + e−2φ)(?Fb)
2
]

= e−φ(?Fb)
2 + eφ(?Fc − ` ? Fb)

2. (3.5)

So, the action (3.1) can be written as

S = −
∫

d2σ
1

2υ

[
− gE +

−→
F TM−1−→F

]
. (3.6)

If Λ =

(
a b
c d

)
is an SL(2, R) matrix, it is obvious that the action (3.6) is

invariant under the following SL(2, R) transformations:

M −→ ΛMΛT ,
−→
F −→ Λ

−→
F , (gE)ij −→ (gE)ij. (3.7)

We will see that the Nambu-Goto action can be derived from the action (3.1).
First, we need the equation of motion of c. Because

Fcij = d[ i ∧ cj ] − Cij −→ ?Fc =
1

2
εij

[
d[ i ∧ cj ] − Cij

]
, (3.8)
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from the action (3.1) and the Euler-Lagrange equation we can get

∂i

{
1

υ
eφ(?Fc − ` ? Fb)

1

2
εij

}
= 0, (3.9)

then
1

υ
eφ(?Fc − ` ? Fb)

1

2
= constant ≡ TD/2

−→ ?(Fc − `Fb) = υ e−φ TD. (3.10)

The constant TD will be identified as the tension of D-string later. Similarly, we
can get the equation of motion of b:

∂i

{
1

υ

[
e−φ(?Fb)

1

2
εij + eφ ? (Fc − `Fb)(−`)

1

2
εij

]}
= 0

−→ 1

υ

[
e−φ(?Fb)

1

2
+ eφ ? (Fc − `Fb)(−`)

1

2

]
= constant

≡ −TF /2

−→ eφ` ? (Fc − `Fb) − e−φ ? Fb = υ TF . (3.11)

The constant TF will be identified as the tension of F-string later. We see that
the tensions can be generated from the equations of motion of one-forms c and b.
From (3.10) and (3.11), it is easy to get

?Fb = −υ eφ
(
TF − ` TD

)
, (3.12a)

?Fc = υ e−φTD − `υ eφ
(
TF − ` TD

)
. (3.12b)

If we let TD = 0, the action (3.1) becomes

S = −
∫

d2σ
1

2υ

[
− gE + eφ υ2 T 2

F

]
. (3.13)

Solving for υ, we can get the Nambu-Goto action

S = −TF

∫
d2σ eφ/2

√
−gE

= −TF

∫
d2σ

√
−g, (3.14)

where we have used the relation (gE)ij ≡ e−φ/2gij. Further, if we add an interaction
term −TF

2
εijBij to the action (3.13), we get

S = −
∫

d2σ

{
1

2υ

[
− gE + eφ υ2 T 2

F

]
+

1

2
TF εijBij

}
. (3.15)
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Solving for υ again, we recover the fundamental string action

S = −TF

∫
d2σ [

√
−g +

1

2
εijBij]. (3.16)

Now, we want to show that the equations of motion for the embedding coordinates
from the action (3.15) and from the action (3.1) are the same in the situation of
TD = 0. First, let us try to find the equations of motion for the embedding
coordinates from the action (3.1). The action (3.1) can be written as

S = −
∫

d2σ
1

2υ

{
− det

(
∂iX

µ∂jXµ

)
+

1

2
e−φ(Fbij − ∂iX

µ∂jX
νBµν)

2

+
1

2
eφ

[
(Fcij − ∂iX

µ∂jX
νCµν) − `(Fbij − ∂iX

µ∂jX
νBµν)

]2
}

. (3.17)

The equations of motion for embedding coordinates from the action (3.17) is

∂i
1

2υ

{
DET − e−φ(F ij

b − ∂iXµ∂jXνBµν)∂jX
νBµν

−eφ
[
(F ij

c − ∂iXµ∂jXνCµν) − `(F ij
b − ∂iXµ∂jXνBµν)

]
(
∂jX

νCµν − `∂jX
νBµν

)}
= 0, (3.18)

here, ∂i ≡ ∂
∂σi , and DET means the contribution from −gE. If TD = 0, the above

equations of motion become

∂i
1

2υ

{
DET − e−φ(F ij

b − ∂iXµ∂jXνBµν)∂jX
νBµν

}
= 0, (3.19)

which coincides with the equations of motion for the embedding coordinates from
the following action

S = −
∫

d2σ

{
1

2υ

[
− gE + eφ υ2 T 2

F

]
− 1

2
TF εijFbij

}
. (3.20)

By integrating out b from the action (3.20), we recover the action (3.15).
We will construct the SL(2, R)-invariant action for the (p, q)-string. First, it

can be verified that the equations of motion for the embedding coordinates from
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the following action are also (3.18).

S = −
∫

d2σ
1

2υ

{
− gE + υ2 eφ (` TD − TF )2 + υ2 e−φ T 2

D

−2υ
(
TF ? Fb − TD ? Fc

)}
= −

∫
d2σ

{−gE

2υ
+

υ

2

[
eφ(` TD − TF )2 + e−φ T 2

D

]
−1

2
εij

(
TFFbij − TDFcij

)}
. (3.21)

By integrating out b and c, we have

S = −
∫

d2σ
1

2υ

{
− gE + υ2 eφ (` TD − TF )2 + υ2 e−φ T 2

D

+2υ
(
TF ? B(2) − TD ? C(2)

)}
= −

∫
d2σ

{−gE

2υ
+

υ

2

[
eφ(` TD − TF )2 + e−φ T 2

D

]
+

1

2
εij

(
TF Bij − TDCij

)}
. (3.22)

Solving for υ, we get

S = −
∫

d2σ
{√

−gE

√
(` TD − TF )2eφ + T 2

De−φ

+
1

2
εij

[
TF Bij − TDCij

]}
= −T

∫
d2σ

{√
−gE

√
(p − q`)2eφ + q2e−φ

+
1

2
εij

[
pBij − qCij

]}
≡ −

∫
d2σ

{
T(p, q)

√
−gE +

T

2
εij

[
pBij − qCij

]}
, (3.23)

here we have defined that TF = p T and TD = q T with p and q are the charges
of F-string and D-string respectively. TF and TD are the tensions of F-string and
D-string respectively. T(p, q) = T

√
(p − q`)2eφ + q2e−φ is the tension of the (p, q)-

string, which coincides with the result given by [14]. The action (3.23) describes
a (p, q)-string and it is SL(2, R)-invariant. If ` = 0, φ = φ0 and gs = eφ0 , in the
string frame we have

T
(s)
(p, q) = T

√
p2 +

q2

g2
s

. (3.24)
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Where φ0 is the asymptotic value of the dilaton. It is easy to see that the tension
of F-string is T

(s)
(1, 0) = T , and the tension of D-string is T

(s)
(0,1) = T/gs. There is a

strong-weak duality between the F-string and D-string.
There is another approach to get an SL(2, R)-invariant action for the (p, q)-

string. Following [22], we define the action as

S = −T

∫
d2σ

√
−g

{
e−φ

√
q2 + (t eφ)2 − ?

[
(q` − t)Fb + qC(2)

]}
, (3.25)

here t is an auxiliary scalar. The action (3.23) can be derived from the action
(3.25). First, from (3.25), the equation of motion of t is

teφ√
q2 + (teφ)2

= − ? Fb. (3.26)

Substituting this in the action (3.25), we get

S = −T

∫
d2σ

√
−g

{
e−φ

√
q2 + (teφ)2 + t ? Fb − q ?

[
C(2) + `Fb

]}
= −T

∫
d2σ

√
−g

{
e−φ

√
q2 +

q2(?Fb)2

1 − (?Fb)2

− q ? Fb√
1 − (?Fb)2

e−φ ? Fb − q ?
[
C(2) + `Fb

]}

= −Tq

∫
d2σ

√
−g

{
e−φ

[√ 1

1 − (?Fb)2
− (?Fb)

2√
1 − (?Fb)2

]
− ?

(
C(2) + `Fb

)}
= −Tq

∫
d2σ

√
−g

{
e−φ

√
1 − (?Fb)2 − ?

(
C(2) + `Fb

)}
= −qT

∫
d2σ

[
e−φ

√
−g + g(?Fb)2 −

√
−g ?

(
C(2) + `Fb

)]
= −qT

∫
d2σ

[
e−φ

√
−g − 1

2
F2

b −
√
−g ?

(
C(2) + `Fb

)]
= −qT

∫
d2σ

[
e−φ

√
− det( g + Fb) −

√
−g ?

(
C(2) + `Fb

)]
, (3.27)

here we used ?Fb = 1
2
√
−g

εijFbij. Obviously, the action (3.27) is the q times the
D-string action. The equation of motion of b from the action (3.25) imposes that
q` − t = constant ≡ p. Substituting this in the action (3.25), and integrating out
b, we can achieve

S = −T

∫
d2σ

√
−g

[√
(qe−φ)2 + (p − `q)2 + p ? B(2) − q ? C(2)

]
, (3.28)
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which is the same as the action (3.23) if go into the Einstein frame.
As we have seen, the construction of the SL(2, R)-invariant action for one-

branes is not so difficult. For the case of D3-brane, it is also not so difficult
because it is a singlet. But for the case of five-branes, things become complicated.
The reason is that we can only have one Born-Infeld vector on the word-volume
otherwise we will break the balance of the degrees of freedom between the bosonic
and the fermionic parts. In the string case, we can introduce another vector to
form a doublet, since a vector has no physical degree of freedom in this case. But in
the case of five-branes we can not do this because a vector will have some physical
degrees of freedom in this case. Though an action was constructed for this case
[19], it was not complete. Things become more complicated for the cases of seven-
and nine-branes, because there are many types of seven-branes and nine-branes.
Difficulties are overcome in [20]. We will discuss this briefly in next section.

3.2 The universal formula
In this section, we follow [20] to give an universal description of the property of
the SL(2, R) symmetry of type IIB branes.

As we know that a charged p-brane can couple to a (p + 1)-form gauge field.
It turns out that in the IIB case, these gauge fields are as follows:

Aα
(2), A(4), Aα

(6), Aαβ
(8), Aαβγ

(10), Aα
(10), (3.29)

which are a doublet of 2-forms, a singlet of 4-form, a doublet of 6-forms, a triplet
of 8-forms, a quadruplet of 10-forms and a doublet of 10-forms respectively. The
SU(1, 1) indices α, β, γ = 1, 2. And also, the vector fields V α

(1) is introduced. But
in order to have supersymmetry on the world-volume, we can only have one vector
on it. This is satisfied by requiring that only the combination qαV α

(1) lives on the
world-volume. Here qα are the charges of F-string and D-string.

By requiring that the WZ term has a single world-volume vector field for the
cases of p > 1 and has target space gauge invariance, the WZ term can be formally
written as

• p = 1, LWZ = q̃αCα
(2);

• p 6= 1, LWZ = q · CeqF(2) .

Where C is the formal sum of some forms(for details, see [20]). For the definitions
of others, we refer to the reference and the appendices. These WZ terms are
obviously SL(2, R)-invariant. The DBI part of the Lagrangian is suggested to be

LDBI = −τp,E

√
− det

(
gE +

qF(2)

(qqM)1/2

)
, (3.30)
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with the tension τp,E:

• p = 1, τ1,E = (q̃ q̃M)1/2;

• p 6= 1, τp,E = (qqM)
p−3
4 .

It is obvious that the DBI part is also SL(2, R)-invariant. Therefore, the total
Lagrangian L = LDBI + LWZ is SL(2, R)-invariant.

As we said, for the string case, we have the F-string and the D-string, which
form a doublet. For the three-brane case, we have the D3-brane, which form a
singlet. For the five-brane case, we have NS5-brane and D5-brane, which form a
doublet. The cases of seven-branes and nine-branes are more complicated. For
the seven-branes, it turns out that there are three conjugacy classes[23] labeled
by det qαβ which can take the values: detqαβ = 0, det qαβ > 0 or det qαβ <
0. The later two classes can not be gotten from the first one by any SL(2, R)
transformations. Another important fact is that there is no action with detqαβ 6= 0
which contains only a single Born-Infeld vector. Thus in this report, for seven-
branes, we only consider the conjugacy class with detqαβ = 0, which contains the
D7-brane. For the nine-branes, there are also some conjugacy classes. We only
consider the conjugacy class containing the D9-brane since the other conjugacy
classes are not supersymmetric.

We leave the detail discussions about the actions for special cases to the refer-
ence.

In the next chapter, we will use the similar formula of the Lagrangian here but
with some changes by redefining the fields. The property of SL(2, R) symmetry is
not changed yet.
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Chapter 4

Kappa-Symmetry of
SL(2, R)-Invariant Super IIB Branes

Since super Dp-branes and spuer p-branes are all have kappa-symmetry, it is be-
lieved that the bound states of these objects also have kappa-symmetry. In this
chapter, we will discuss the kappa-symmetry property of SL(2, R)-invariant super
IIB branes in a flat background and will work in the Einstein frame. We will use
the method proposed by [9]. First, we will consider the super one-branes case,
then we will discuss the cases of super IIB p-branes with p > 1 uniformly. At last
we will give examples for some special cases.

4.1 The super one-branes
The SL(2, R)-invariant Lagrangians for general super IIB p-branes are formally
similar to those given in [20].

In this section, let us consider the case of one-branes. The Lagrangian of the
SL(2, R)-invariant super one-branes is

L1−brane = −(q̃ q̃M)1/2
√

− det gij + q̃αCα
(2)

= −
√

(q + p`)2eφ + p2e−φ
√
−g + pC(2) + qB(2), (4.1)

where gij is the pull back of the Einstein metric. It is understood that there should
be a Hodge operator which operates on the WZ term if we do not write the WZ
term in form of forms. And also note that the above action is not exactly as that
in Chapter 3. This is just because that the definitions of charges or fields are
different.

Under kappa-symmetry transformations, the variations of gij is the same as
that in [9]:

δκgij = −2δκθγ(i∂j)θ, (4.2)
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since here γi has the same definition as in [9]. We assume that

δκ[
1

2
εij(pCij + qBij)] =

1

2
εij(pδκCij + qδκBij)

=
√

(q + p`)2eφ + p2e−φεijδκθτ3γ[i∂j]θ

= (q̃q̃M)1/2εijδκθτ3γ[i∂j]θ, (4.3)

which can also be written in the form of forms as

δκ(q̃αCα
(2)) = 2(q̃q̃M)1/2δκθτ3ΓµdθΠµ. (4.4)

Where, δκθ, θ and Πµ are invariant under SL(2, R) transformations. We can re-
cover (2.18) and (2.34) if we take q̃α′ = (0,−1) and q̃α′ = (1, 0) in (4.4) respectively
and at the same time go into the string frame. The contributions from the total
derivatives of δκC(2) and δκB(2) should be cancelled in (4.4). If we let

T j
(1) = (q̃q̃M)1/2τ3ε

ijγi, (4.5)

we can get

δκ[
1

2
εij(pCij + qBij)] = 2δκθT

j
(1)∂jθ. (4.6)

It is obvious that T j
(1) is invariant under SL(2, R) transformations. We can recover

(2.24b) and (2.36b) if we take q̃α′ = (1, 0) and q̃α′ = (0,−1) in (4.5) respectively
and at the same time go into the string frame. This is not strange, since we can
get the actions of D-string and F-string from the action of (p, q)-string in the same
situation. Now, let us define that

ρ(1) =
1

2
(q̃q̃M)1/2τ3ε

ijγiγj. (4.7)

Then, it is easy to check that

(ρ(1))2 = (q̃q̃M)(−g). (4.8)

Further, if we define

ρ(1) = γ(1)(q̃q̃M)1/2
√
−g, (4.9)

we have

γ(1) =
1√
−g

1

2
εijτ3γiγj. (4.10)
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It is obvious that γ(1) is invariant under SL(2, R) transformations. Also, we can
get (γ(1))2 = 1 and trγ(1) = 0. It can be proved that

ρ(1)γk = T j
(1)gjk. (4.11)

The variation of the DBI part under kappa-symmetry transformations is given by

δκ

[
− (q̃q̃M)1/2

√
−g

]
= 2(q̃q̃M)1/2

√
−gδκθγig

ij∂jθ

= 2δκθγ
(1)T j

(1)∂jθ. (4.12)

Therefore

δκL1−brane = 2δκθ(γ
(1) + 1)T j

(1)∂jθ. (4.13)

So, the SL(2, R)-invariant super one-branes have kappa-symmetry in a flat back-
ground if we require that δκθ = κ(1 − γ(1)).

4.2 The universal formula for the super IIB p-
branes with p > 1

In this section, let us consider the cases of p > 1. The Lagrangian of the SL(2, R)-
invariant super IIB p-branes is similar to that of [20]:

L = −(qqM)
p−3
4

√
− det

(
g +

qF(2)

(qqM)1/2

)
+ q · CeqF(2) . (4.14)

If we assume that the variation of the combination qF(2) under kappa-symmetry
transformations is

δκ[qF(2)]ij = δκ(−qFcij + pFbij)

= 2
√

(p − q`)2eφ + q2e−φδκθτ3γ[i∂j]θ

= 2(qqM)1/2δκθτ3γ[i∂j]θ, (4.15)

we can get the variation of the DBI part:

δκ

[
− (qqM)

p−3
4

√
− det

(
g +

qF(2)

(qqM)1/2

) ]
= 2(qqM)

p−3
4

√
− det

(
g + Φ qF(2)

)
δκθγi{(g + τ3Φ qF(2))

−1}ij∂jθ, (4.16)
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where Φ = (qqM)−1/2. Similar as in [9], we let ψ ≡ γidσi and define

ρB =
∑
p odd

ρp+1 =
∑
p odd

1

(p + 1)!
ρi1...ip+1dσi1 ...dσip+1

= (qqM)
p−3
4 eΦ qF(2)CB(ψ)τ1, (4.17a)

TB =
∑
p odd

Tp =
∑
p odd

1

p !
Ti1...ipdσi1 ...dσip

= (qqM)
p−3
4 eΦ qF(2)SB(ψ)τ1, (4.17b)

with

CB(ψ) = τ3 +
1

2!
ψ2 +

1

4!
τ3ψ

4 +
1

6!
ψ6 + . . . , (4.18a)

SB(ψ) = ψ +
1

3!
τ3ψ

3 +
1

5!
ψ5 +

1

7!
τ3ψ

7 + . . . . (4.18b)

And let

ρ(p) =
1

(p + 1)!
εi1...ip+1ρi1...ip+1 , (4.19a)

T j
(p) =

1

p!
εi1...ipjTi1...ip . (4.19b)

From the above definitions, we give some ρp’s and Tp’s here explicitly:

ρ2 = (qqM)−1/2
[1

2
τ1ψ

2 + iτ2Φ qF(2)

]
,

ρ4 =
1

4!
iτ2ψ

4 +
1

2
τ1Φ qF(2)ψ

2 +
1

2
iτ2(Φ qF(2))

2,

ρ6 = (qqM)1/2
[ 1

6!
τ1ψ

6 +
1

4!
iτ2Φ qF(2)ψ

4

+
1

4
τ1(Φ qF(2))

2ψ2 +
1

3!
iτ2(Φ qF(2))

3
]
,

. . . , (4.20a)
T1 = (qqM)−1/2τ1ψ,

T3 =
1

3!
iτ2ψ

3 + τ1Φ qF(2)ψ,

T5 = (qqM)1/2
[ 1

5!
τ1ψ

5 +
1

3!
iτ2Φ qF(2)ψ

3 +
1

2
τ1(Φ qF(2))

2ψ
]
,

. . . . (4.20b)
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ρB and TB can also be written as

ρB = (qqM)
p−3
4 eΦ qF(2)

(
0 cosh ψ

− cos ψ 0

)
, (4.21)

TB = (qqM)
p−3
4 eΦ qF(2)

(
0 sinh ψ

sin ψ 0

)
. (4.22)

It is obvious that ρp and T j
(p) are invariant under S(2, R) transformations. Also,

we can get

ρ(p) = (qqM)
p−3
4

(p+1)/2∑
n=0

τ
p−2n+3

2
3 τ1

2nn!(p − 2n + 1)!

εi1j1...injnin+1...ip−n+1Φn(qF(2))i1j1 ...(qF(2))injnγin+1 ...γip−n+1 ,

(4.23)

T
ip−n+1

(p) = (qqM)
p−3
4

(p−1)/2∑
n=0

τ
p−2n+3

2
3 τ1

2nn!(p − 2n)!

εi1j1...injnin+1...ip−n+1Φn(qF(2))i1j1 ...(qF(2))injnγin+1 ...γip−n ,

(4.24)

where (qF(2))injn = (−qFcinjn + pFbinjn). It can be proved that(see Appendix B)

(ρ(p))2 = (qqM)
p−3
2

[
− det

(
g + Φ qF(2)

)]
, (4.25)

ρ(p)γi = T j
(p)

(
g + τ3Φ qF(2)

)
ji
. (4.26)

And, if we let

ρ(p) = γ(p)(qqM)
p−3
4

√
− det

(
g + Φ qF(2)

)
, (4.27)

we will have (γ(p))2 = 1, trγ(p) = 0 and

γ(p) =
1√

− det
(
g + Φ qF(2)

) (p+1)/2∑
n=0

τ
p−2n+3

2
3 τ1

2nn!(p − 2n + 1)!

εi1j1...injnin+1...ip−n+1Φn(qF(2))i1j1 ...(qF(2))injnγin+1 ...γip−n+1 .

(4.28)
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It is obvious that ρ(p) and γ(p) are invariant under SL(2, R) transformations. The
variation of the DBI part under kappa-symmetry transformations is

δκLDBI = −(qqM)
p−3
4 δk

√
− det

(
g + Φ qF(2)

)
= 2(qqM)

p−3
4

√
− det

(
g + Φ qF(2)

)
δκθγi{(g + τ3Φ qF(2))

−1}ij∂jθ

= 2δκθγ
(p)ρ(p)γi{(g + τ3Φ qF(2))

−1}ij∂jθ

= 2δκθγ
(p)T k

(p)

(
g + τ3Φ qF(2)

)
ki
{(g + τ3Φ qF(2))

−1}ij∂jθ

= 2δκθγ
(p)T j

(p)∂jθ. (4.29)

The variation of the WZ part is

δκLWZ = δκ[q · CeqF(2) ] = eqF(2) [δκ(q · C) + (q · C)δκ(qF(2))]. (4.30)

On the other hand, if requiring kappa-symmetry, we should have

δκLWZ = 2δκθT
j
(p)∂jθ, (4.31)

or in terms of forms

δκLWZ = (−1)p+12δκθTpdθ. (4.32)

Note that in the IIB case, p is always odd. Formally, we can get

eqF(2) [δκ(q · C) + (q · C)δκ(qF(2))]

= 2δκθ(qqM)
p−3
4 eΦ qF(2)SB(ψ)τ1dθ. (4.33)

Because

δκ(qF(2)) = 2(qqM)1/2δκθτ3ΓµdθΠµ

= 2(qqM)1/2δκθτ3ΓµΠµdθ, (4.34)

where Πµ = dXµ + θΓµdθ = Πµ
i dσi, we get

eqF(2)δκ(q · C) = 2δκθ
[
(qqM)

p−3
4 eΦ qF(2)SB(ψ)τ1

−eqF(2)(q · C)(qqM)1/2τ3ΓµΠµ
]
dθ. (4.35)

So, for the cases of p > 1, the variation of (q·C) under kappa-symmetry transforma-
tions is given by (4.35). On both sides of this equation, there are sums of different
forms. For the p-branes case, we should just consider the sum of (p + 1)-forms on
both sides.

37



4.3 Special cases
Redefinitions of fields

Before considering special cases, let us redefine the fields. The reason that we do
this is that we want to have a WZ term which is really the expansion of q · CeqF(2) .
Table 4.1 gives the definitions of fields in [20, 24] and in this thesis.

Definitions of fields in [20, 24] Redefinitions of fields in this paper
B(2) = 1

2
(A1

(2) + A2
(2)) B′

(2) = −
√

2
2

i(A1
(2) − A2

(2))

C(2) = − i
4
(A1

(2) − A2
(2)) C ′

(2) =
√

2
2

(A1
(2) + A2

(2))

A(4) A′
(4) = 4

3
A(4)

C(4) = A(4) − 3
8
q̃αqβAα

(2)A
β
(2) C ′

(4) = 4
3
A(4) − 1

2
q̃αqβAα

(2)A
β
(2)

Aα
(6) A′α

(6) = − 1
45

Aα
(6)

Cα
(6) = Aα

(6) + 20A(4)A
α
(2)

− 15
2
qβ q̃γA

α
(2)A

β
(2)A

γ
(2)

C ′α
(6) = − 1

45
Aα

(6) −
4
9
A(4)A

α
(2)

+ 1
6
qβ q̃γA

α
(2)A

β
(2)A

γ
(2)

Aαβ
(8) A′αβ

(8) = 1
315

Aαβ
(8)

Cαβ
(8) = Aαβ

(8)+
7
4
A

(α
(6)A

β)
(2)+35A(4)A

α
(2)A

β
(2)

− 105
8

qγ q̃δA
α
(2)A

β
(2)A

γ
(2)A

δ
(2)

C ′αβ
(8) = 1

315
Aαβ

(8) + 1
180

A
(α
(6)A

β)
(2)

+ 1
9
A(4)A

α
(2)A

β
(2)−

1
24

qγ q̃δA
α
(2)A

β
(2)A

γ
(2)A

δ
(2)

Aαβγ
(10) A′αβγ

(10) = 1
4725

Aαβγ
(10)

Cαβγ
(10) = Aαβγ

(10) − 3A
(αβ
(8) A

γ)
(2)

− 21
4
A

(α
(6)A

β
(2)A

γ)
(2)−105A(4)A

α
(2)A

β
(2)A

γ
(2)

+ 315
8

qδ q̃εA
α
(2)A

β
(2)A

γ
(2)A

δ
(2)A

ε
(2)

C ′αβγ
(10) = 1

4725
Aαβγ

(10) −
1

1575
A

(αβ
(8) A

γ)
(2)

− 1
900

A
(α
(6)A

β
(2)A

γ)
(2) −

1
45

A(4)A
α
(2)A

β
(2)A

γ
(2)

+ 1
120

qδ q̃εA
α
(2)A

β
(2)A

γ
(2)A

δ
(2)A

ε
(2)

Table 4.1: Redefinitions of fields.

The fields Cα
(2), Aα

(2), C(0), Fα
(2), V α

(1), Σα and Λα
(1) are the same as those in [20] and

so are the charges(the definition of Fα
(2) is different). The fields B(2) and C(2) defined

in [24] do not form a doublet under S-duality transformation. In order to preserve
gauge invariance, the corresponding gauge parameters and gauge transformations
should be changed as compared with [20, 24]. For example, the variations of A′

(4)

and C ′
(4) under gauge transformations should be

δgA
′
(4) = 4∂Λ′

(3) −
i

3
εαβΛα

(1)F
β
(3), (4.36)

δgC ′
(4) = 4∂Λ′

(3) +
2

3
qαFα

(3)q̃βΛβ
(1). (4.37)

Where, Λ′
(3) = 4

3
Λ(3) with Λ(3) is the same as that in [20, 24]. Certainly, the

supersymmetric transformations of these fields should also be changed. The field
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strength Fα
(3) is the same as that in [20, 24], but the definitions of other high rank

field strengths should be changed in order to keep them gauge invariant. Note that,
the primes here just mean the redefinitions of fields, which do not mean that we
use SU(1, 1) basis here. And we use notations without primes after redefinitions.
And also notice that, we discuss super IIB branes here, so the fields are not only
the bosonic parts though formally they are the same.

Super three-branes

Now, let us take the example of p = 3. After redefinitions, the Lagrangian becomes

L3−brane = −

√
− det

(
g +

qF(2)

(qqM)1/2

)
+ C(4) + q̃αqβCα

(2)F
β
(2) +

1

2
C(0)(qF(2))

2,(4.38)

with C(4) = A(4) − 1
2
q̃αqβAα

(2)A
β
(2). We have

eqF(2)δκ(q · C) = 2δκθ
[
eΦ qF(2)SB(ψ)τ1

−eqF(2)(q · C)(qqM)1/2τ3ΓµΠµ
]
dθ −→

δκC(4) + qF(2)δκ(q̃αCα
(2)) = 2δκθ

[( 1

3!
iτ2ψ

3 + τ1Φ qF(2)ψ
)

−
(
qF(2)C(0) + q̃αCα

(2)

)
(qqM)1/2τ3ΓµΠµ

]
dθ.

(4.39)

Therefore

δκC(4) = 2δκθ
[( 1

3!
iτ2ψ

3 + τ1Φ qF(2)ψ
)
− qF(2)(q̃q̃M)1/2τ3ΓµΠµ

−
(
qF(2)C(0) + q̃αCα

(2)

)
(qqM)1/2τ3ΓµΠµ

]
dθ. (4.40)

It is obvious that eq. (4.40) is invariant under SL(2, R) transformations.
So, the kappa-symmetry property of the Lagrangian (4.38) requires C(4) to vary

as (4.40) under kappa-symmetry transformations.

Super five-branes

We can use the same procedure as above for other cases. For the case of p = 5,
the Lagrangian can be written as

L5−brane = −(qqM)1/2

√
− det

(
g +

qF(2)

(qqM)1/2

)
+ qαCα

(6)

+C(4)qαFα
(2) +

1

2
q̃βCβ

(2)(qF(2))
2 +

1

6
C(0)(qF(2))

3. (4.41)
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Since we have known how q̃αCα
(2) and C(4)vary under kappa-symmetry transforma-

tions, we can get the variation of qαCα
(6) from eq. (4.35).

Super seven-branes and super nine-branes

After redefinitions, the Lagrangians of the super seven-branes and super nine-
branes are given by

L7−brane = −(qqM)

√
− det

(
g +

qF(2)

(qqM)1/2

)
+ qαqβCαβ

(8)

+qαqβCα
(6)F

β
(2) +

1

2
C(4)(qF(2))

2 +
1

6
q̃γCγ

(2)(qF(2))
3

+
1

24
C(0)(qF(2))

4, (4.42)

and

L9−brane = −(qqM)3/2

√
− det

(
g +

qF(2)

(qqM)1/2

)
+ qαqβqγCαβγ

(10)

+qαqβqγCαβ
(8)F

γ
(2) +

1

2
qαCα

(6)(qF(2))
2 +

1

6
C(4)(qF(2))

3

+
1

24
q̃εCε

(2)(qF(2))
4 +

1

120
C(0)(qF(2))

5. (4.43)

Similarly, we can get the variations of qαqβCαβ
(8) and qαqβqγCαβγ

(10) under kappa-
symmetry transformations from previous results and eq. (4.35).

Notice that, the above two actions belong to the two conjugacy classes which
contain the super D7-brane and the super D9-brane respectively. The actions
belonging to the other conjugacy classes might also have kappa-symmetry but do
not have SL(2, R) symmetry.
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Summary and Conclusions

The subject of this report is the kappa-symmetry of SL(2, R)-invariant super IIB
branes.

A simple description of string theory was given in Chapter 1. Before discussing
strings, we gave a short introduction to the relativistic particle at the beginning
of this chapter. Then, both bosonic strings and superstrings were considered. We
got the spectra of states for the first levels and the corresponding fields. At the
end of this chapter, Dp-branes and p-branes were introduced. And we knew the
necessity of the existence of Dp-branes in string theory by the T-duality of open
strings.

Chapter 2 gave the proofs of kappa-symmetry for the cases of the superparticle,
the super D-string and the super F-string. The later two cases were discussed in
a flat background. We knew that kappa-symmetry can reduce half of the degrees
of freedom of the femionic part. Thus it is a natural tool to keep supersymmetry
on the world-volume.

The topic of Chapter 3 is the SL(2, R) symmetry of IIB branes. But there, we
only considered the bosonic part. The example of one-branes case was discussed
in details. A very elegant way of constructing the SL(2, R) symmetric actions for
IIB branes was introduced simply at the end of this chapter.

The main topic of this report, i.e., kappa-symmetry of SL(2, R)-invariant su-
per IIB branes, came in Chapter 4. Since the case of one-branes differs from the
cases of p = 3, 5, 7, 9, we considered it separately. By assuming how q̃αCα

(2) varies
under kappa-symmetry transformations, we proved that the action of super IIB
one-branes, which has SL(2, R) symmetry, has kappa-symmetry at the same time.
After this, an universal discussion about the cases of p = 3, 5, 7, 9 was given. By
assuming how qαFα

(2) varies under kappa-symmetry transformations, the general
formulas of the variations of the DBI and WZ parts under kappa-symmetry trans-
formations were given. We gave a general proof of the kappa-symmetry of the
super IIB brane actions. The key steps of the proof were given in Appendix B.
After the general description, the special case of p = 3 was discussed in detail.
The variation of the SL(2, R) singlet, i.e., the Ramond-Ramond four-form, under
kappa-symmetry transformations was given. Following this, a simple discussion
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for other special cases was given. In this chapter, we also redefined the fields in
order to get simpler formulae and at the same time make the proof natural and
easier. However, the meaning of the redefinition is not yet understood. The dis-
cussion in this chapter is based on a flat background. A natural generalization is
to consider the situation in a curved background. Then the situation will become
more complicated and the IIB superspace constraints on field strength should be
considered.
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Appendix A

Some Conventions

In this appendix, we give some conventions. Let the charges qα form a doublet of
SU(1, 1) and qα′ form a doublet of SL(2, R) with α = 1, 2. If

q̃α′ =

(
p
q

)
, (A.1)

we can get

qα′ =

(
−q
p

)
, qα = −

√
2

2

(
q + ip
q − ip

)
, q̃α =

√
2

2

(
p − iq
p + iq

)
, (A.2)

by the transformations:

qα′ =

(
0 −1
1 0

)
q̃α′ , qα =

√
2

2

(
1 −i
1 i

)
qα′ , qα =

(
−i 0
0 i

)
q̃α. (A.3)

If we define

1

2
(q̃αqβ − q̃βqα) ≡ q̃[αqβ] =

i

2
εαβ, with ε12 = 1 and ε1′2′ = −i, (A.4)

we will get

p2 + q2 = 1. (A.5)

Note that, (A.5) is just a normalization condition which does not mean that the
charges are fractional. We can choose another normalization condition if we like.
The SU(1, 1) doublet 2-forms potential fields are Aα

(2) with the constraint (A1
µν)

∗ =

A2
µν . The relations between the standard Kalb-Ramond 2-form potential B(2), the
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Ramond-Ramond 2-form potential C(2) and the SU(1, 1) doublet 2-forms Aα
(2) are

given as following:

B(2) = −
√

2

2
i(A1

(2) − A2
(2)), (A.6a)

C(2) =

√
2

2
(A1

(2) + A2
(2)), (A.6b)

which are different from those of [20, 24]. Given

Mα′β′
= eφ

(
`2 + e−2φ `

` 1

)
, (A.7)

we have

q̃αq̃βMαβ = (q + p`)2eφ + p2e−φ, (A.8)
qαqβMαβ = (p − q`)2eφ + q2e−φ. (A.9)

For a special case, for instance, the D-brane case, we have

q̃α′ =

(
1
0

)
, (A.10)

and then

q̃αAα
(2) = C(2), qαAα

(2) = B(2), n = 2; (A.11)
q̃αAα

(n) = B(n), qαAα
(n) = C(n), n 6= 2. (A.12)

It is convenient to define

A1′

(2) = C(2), A2′

(2) = B(2); A1′

(6) = B(6), A2′

(6) = C(6), (A.13)

which are useful in calculations. If we define

Fα
(2) = Fα

(2) − Aα
(2), F α

(2) = 2∂ V α
(1), (A.14)

and

Fα′

(2) = dV α′

(1) − Aα′

(2), F α′

(2) = dV α′

(1), (A.15)

with

V 1′

(1) = c, V 2′

(1) = b, (A.16)

44



we can get

F1′

(2) = dc − C(2) ≡ Fc, F2′

(2) = db − B(2) ≡ Fb. (A.17)

If q̃α′ is given by (A.1), we have

q̃αCα
(2) = q̃α′Aα′

(2)

= pA1′

(2) + qA2′

(2)

= pC(2) + qB(2), (A.18)

qαAα
(2) = qα′Aα′

(2)

= −qA1′

(2) + pA2′

(2)

= −qC(2) + pB(2), (A.19)

qF(2) = qα′Fα′

(2)

= −qF1′

(2) + pF2′

(2)

= −qFc + pFb. (A.20)
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Appendix B

Proofs of Equations (4.25) and
(4.26)

The proof of equation (4.25)

First, let us prove eq. (4.25). We follow the same method used by [9]. From eqs.
(4.17a), (4.18a) and (4.19a), when p = 2k + 1, we have

ρ2k+2 = (qqM)
p−3
4

k+1∑
n=0

τ k−n+2
3

(Φ qF(2))
n

n!

ψ2(k−n+1)

[2(k − n + 1)]!
τ1.

(B.1)

Defining γ
[2]
i ≡ γ2iγ2i+1, we can get

ρ(2k+1) = (qqM)
p−3
4

k+1∑
n=0

τ k−n+2
3

∑
i1<...<in.

in+1<...<ik+1.

∧i1 ... ∧in γ
[2]
in+1

...γ
[2]
ik+1

τ1

= (qqM)
p−3
4 τ3

k+1∑
n=0

τ k−n+1
3

∑
i1<...<in.

in+1<...<ik+1.

∧i1 ... ∧in γ
[2]
in+1

...γ
[2]
ik+1

τ1

= (qqM)
p−3
4 τ3

k∏
i=0

(∧i + τ3γ
[2]
i )τ1

= (qqM)
p−3
4 τ3 τ1

k∏
i=0

(∧i − τ3γ
[2]
i ), (B.2)
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since in some Lorentz frame, we have

Φ qF(2) =
k∑

i=0

Λidσ2i ∧ dσ2i+1. (B.3)

Where, (i1, ..., ik+1) is a permutation of the numbers (0, ..., k). So

(ρ(2k+1))2 = (qqM)
p−3
2

k∏
i=0

(∧i + τ3γ
[2]
i )τ3τ2τ3τ2

k∏
i=0

(∧i − τ3γ
[2]
i )

= −(qqM)
p−3
2

k∏
i=0

(∧i + τ3γ
[2]
i )

k∏
i=0

(∧i − τ3γ
[2]
i )

= −(qqM)
p−3
2

k∏
i=0

(∧2
i − γ

[2]2

i )

= −(qqM)
p−3
2 det(g + Φ qF(2)). (B.4)

The proof of equation (4.26)

Now, let us prove eq. (4.26). It is equivalent to prove

ρp+1γi = Tpdσj
(
g + τ3Φ qF(2)

)
ji
. (B.5)

Summing over odd p, we should prove that

ρBγi = TBdσj
(
g + τ3Φ qF(2)

)
ji
. (B.6)

We will use the following relations:

ψn

n!
γi =

ψn−1

(n − 1)!
dσjgji +

(−1)n

(n + 1)!
iei

(ψn+1), when n ≥ 1; (B.7)

γi = iei
(ψ1), when n = 0. (B.8)

Where iei
denotes the interior product operator induced by ei = ∂

∂σi
. The general

definition of iX for an n-form ω and a vector field X is given by [9]

iXω =
1

n!

n∑
s=1

(−1)s−1Xµsωµ1...µs...µndσµ1 ...dσµs−1dσµs+1 ...dσµn . (B.9)

Therefore, for n = 0, we can get

eΦ qF(2)τ3γi = eΦ qF(2)iei
(ψ1)τ3. (B.10)
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For n = 2, get

ψ2

2!
γi = ψ dσjgji +

1

3!
iei

(ψ3) −→

eΦ qF(2)
ψ2

2!
γi = eΦ qF(2)ψ dσjgji + eΦ qF(2)

1

3!
iei

(ψ3). (B.11)

For n = 4, get

ψ4

4!
γi =

ψ3

3!
dσjgji +

1

5!
iei

(ψ5) −→

eΦ qF(2)
ψ4

4!
τ3γi = eΦ qF(2)

ψ3

3!
dσjτ3 gji + eΦ qF(2)

1

5!
iei

(ψ5)τ3, (B.12)

and so on. Summing over eqs. (B.10), (B.11), (B.12) and so on, and multiplying
both sides by (qqM)

p−3
4 from left and τ1 from right, we can get

ρBγi = TBdσjgji + (qqM)
p−3
4 eΦ qF(2)iei

(SB(ψ))τ3τ1.

(B.13)

The both sides of the above equation are summations of (p + 1)-forms. Since
eΦ qF(2)SB(ψ) is a summation of (p + 2)-forms, which should vanish. So we have

(qqM)
p−3
4 eΦ qF(2)iei

(SB(ψ))τ3τ1

= −(qqM)
p−3
4 iei

(eΦ qF(2))SB(ψ)τ3τ1

= −(qqM)
p−3
4 eΦ qF(2)iei

(Φ qF(2))SB(ψ)τ3τ1

= −TBiei
(Φ qF(2))τ3

= −TBdσj(Φ qF(2))ijτ3

= TBdσj(Φ qF(2))jiτ3. (B.14)

Therefore

ρBγi = TBdσj
(
g + τ3Φ qF(2)

)
ji
, (B.15)

hence

ρ(p)γi = T j
(p)

(
g + τ3Φ qF(2)

)
ji
. (B.16)
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